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Interface dynamics and solute trapping in alloy solidification with density change

Massimo Conti and Marco Fermani
Dipartimento di Fisica, Universita´ di Camerino, and Istituto Nazionale di Fisica della Materia,

Via Madonna delle Carceri, I-62032 Camerino, Italy
~Received 8 July 2002; published 21 February 2003!

We present a phase-field model for the solidification of a binary alloy, which incorporates hydrodynamic
effects due to the different densities of the solid and liquid phases. We start from a generalized thermodynamic
potential with squared gradient terms for the associated fields; the condition of local positive entropy produc-
tion is then utilized to derive a set of equations that drive the system towards equilibrium. The model has been
numerically solved in one dimension, to investigate the effects of the flow field on the interface dynamics. We
observed that solute trapping is almost unaffected by the fluid advection, while the interface mobility is
strongly reduced as the fluid velocity increases. This reflects on the dependence of the interface temperatureTI

on the growth ratev I : the region of the unstable~ascending! branch is reduced, and the maximum of the
TI(v I) curve is shifted towards lower velocities.

DOI: 10.1103/PhysRevE.67.026117 PACS number~s!: 05.70.Fh, 81.10.Mx, 64.70.Dv, 05.70.Ln
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I. INTRODUCTION

The growth of a crystal from the melt is a complex ph
nomenon that involves many physical effects. The reject
of the latent heat~and solute, for alloy solidification!, away
from the solid-liquid interface, is accompanied by the form
tion of thermal and solute boundary layers which stron
affect the morphological instability of the interface. Mor
over, across the interface the density changes~the solid is
generally denser than the liquid!; the change ranges from
few percent for simple metals to more than 20% for so
eutectic mixtures. The shrinking, or in some cases the d
tation, of the system causes an advection flow in the liq
phase. Then, even in absence of gravity, the purely diffus
picture for the conserved fields in the bulk phases should
extended, to incorporate hydrodynamic effects. Recently,
subject attracted an increased attention for practical reas
The reduction in volume in metal solidification is a source
stress at the growing interface, and may induce cavitat
with formation of defects or micropores in cast produ
@1,2#. A further effect results from the dynamic pressure dr
across the melt: at large growth rates, the change of the m
ing temperature with pressure may significantly alter the
dercooling of the liquid phase.

Hydrodynamic effects in solidification far from equilib
rium have been previously considered by Horvay@3# for a
pure material. Using a free-boundary approach, he stu
the growth of a spherical nucleus into an undercooled me
lower density. The liquid phase was treated as an inco
pressible inviscid fluid with a transition temperature affec
by both the curvature of the nucleus and the hydrodyna
pressure due to the flow. The numerical solution of t
model led Horvay to conclude that at large undercooling
tension field at the interface could induce a change in
microstructure of the solid. A similar analysis was sub
quently conducted by Charach and Rubinstein@4# for the
growth of a planar interface. These authors showed that,
to the effects of the pressure field, some inconsistencie
the Stefan formulation of the problem could be removed a
1063-651X/2003/67~2!/026117~12!/$20.00 67 0261
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the interface velocity is free of singularities during the ent
freezing process.

The above studies were based on the notion of a sh
interface separating the two phases; the governing equa
of the model express the conservation of mass, momen
and energy in each of the bulk phases, with proper interf
boundary conditions. With respect to the original Stef
problem, the latter must incorporate additional constrai
for the mass and momentum conservation.

A more recent approach to the density effects in solid
cation is based on the diffuse interface picture, through
extension of the phase-field model. In the classic formulat
of the model, a nonconserved order parameterf(x,t) char-
acterizes the phase of the system at each point. A suit
free energy~or entropy! functional is then constructed, whic
depends on the order parameter as well as on the asso
~conserved! fields and their gradients. The extremization
the functional with respect to these variables results in
dynamic equations for the evolution of the process. Stud
conducted on solidification of both pure substances and
nary alloys@5–18# pointed out that the model incorporates
a natural fashion the effects of the interface curvature
nonequilibrium phenomena as the trapping of solute into
solid phase and the kinetic undercooling of the solid-liqu
interface. Within this approach, complex phenomena as
formation of solute bands in solidification far from equilib
rium and the groove instability in cellular growth@19–21#
were described and interpreted. Moreover, the interfacial
gion is spread along a finite thickness, which gives a m
natural and consistent picture of the solidification front.

An extension of the phase-field model to incorporate fl
effects was first proposed by Caginalp and Jones@22,23#.
They derived a system of differential equations for the va
ables temperature, order parameter, fluid velocity, dens
and pressure. In the momentum equation, capillary and
cosity effects were neglected. An asymptotic analy
showed the effects of the advection flow on the interfa
kinetics.

In a subsequent study, Oxtoby@24# considered density
change effects in crystal growth starting from a thermod
©2003 The American Physical Society17-1
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M. CONTI AND M. FERMANI PHYSICAL REVIEW E 67, 026117 ~2003!
namic potential in which, besides the nonconserved ph
field, also the local densityr is regarded as a~conserved!
order parameter. The dynamic equation for the growth r
results from the extremization of the potential with respec
the phase field, and the Navier-Stokes equation is writte
the interfacial region using an expression for the capill
stress tensor that is derived resorting to density functio
arguments. Then, the coupled problem to determine
growth rate and the flow field is stated through the abo
equations and the mass conservation condition. Steady
solutions of the model, obtained in isothermal conditions,
in evidence the role of sound modes in density transport

Andersonet al. @25# developed a phase-field model wi
convection in the melt, deriving an expression for the str
tensor within the arguments of the extended irreversible th
modynamics. The problem was treated in the qua
incompressibility approximation, neglecting the pressure
pendence of the local density, which is assumed uniform
the two bulk phases. The condition of positive entropy p
duction, along with the conservation equations for mass,
mentum, and energy, was employed to derive the govern
equations of the model. In a subsequent study, the same
thors @26# examined the sharp interface limit of the mod
Their analysis recovered the standard interfacial conditio
including the Young-Laplace and Clausius-Clapeyron eq
tions for the mechanical and chemical equilibrium at the
terface.

Conti @27# followed a different approach, starting from
grand canonical potential which includes the local density
a dynamic variable. Square gradient terms were allowed
both the structural order parameter and the density field.
stress tensor was derived assuming that any dissipatio
tensorial order should be ascribed to the fluid viscosity.
this formulation, the pressure field is consistently related
the local density via an equation of state. The model eq
tions for the order parameter and the local density, mom
tum, and energy allow to describe the solidification proc
and the flow field, including the propagation of elas
waves. The model was numerically solved in one dimens
to assess the effects of the fluid convection on the gro
dynamics. In the early stage of the growth, significant dev
tions were observed with respect to the standard diffus
dynamics; these effects may become important in the in
pretation of nucleation and postnucleation processes. At
times, when the pressure waves are reabsorbed, the inte
velocity evolves with a power law very close to the diffusi
dependence;t1/2.

The extension of the phase-field model to incorporate
drodynamic effects has been limited in the past to the so
fication of pure substances. As many advanced materials
lize alloys with properties highly sensitive to the grow
conditions, a further step should consider the extension
the model to alloy solidification.

In this paper, we present a phase-field model for al
solidification that incorporates in a thermodynamically co
sistent way flow effects due to density change. The so
phase is modeled as an isotropic fluid with a viscosity mu
larger than that of the liquid. The model extends our previo
study @27# aimed at solidification of pure substances. W
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start identifying a suitable grand canonical potential who
natural variables are the order parameter, density, solute
centration, and temperature. The entropy production eq
tion, coupled with the balance of mass, momentum, and
ergy, is used to derive governing equations that drive
system towards equilibrium. The scalar part of the entro
production fixes the dynamic equation for the structural
der parameter. The vector contributions reduce in the b
phases to the classic Fourier expression for the heat flux
to the Fick’s law for the solute diffusion. A third term, o
tensorial character, allows to find an expression for the st
tensor, starting from the assumption that this contribution
only due to viscous dissipation. This form of the capilla
tensor satisfies the Euler-Lagrange conditions for the gr
canonical potential when the system is in equilibrium.

The equations of the model have been solved numeric
in one dimension, both in the isothermal limit and simulati
a directional solidification experiment. The aim of our sim
lations was to check whether flow effects significantly al
the interface dynamics and the nonequilibrium solute red
tribution across the moving front. This latter phenomen
termed ‘‘solute trapping,’’ reflects on the behavior of the p
tition coefficientk ~the ratio of the solute concentration in th
growing solid to that in the liquid at the interface!, which
deviates from its equilibrium valueke , approaching unity at
large growth rates. We observe that the advection flow d
not alter the structure of the solid-liquid interface. Then, t
interface solute segregation and the trapping phenome
are almost unaffected by the flow field. On the contrary,
interface mobility is strongly reduced as the fluid veloc
increases. This reflects on the dependence of the inter
temperatureTI on the growth ratev I : the region of the un-
stable~ascending! branch is reduced, and the maximum
the TI(v I) curve is found at lower velocities. As a cons
quence, for isothermal growth the border between the ste
and the diffusive regime is slightly shifted. In direction
solidification, the change of theTI(v I) curve should affect
the onset of the oscillatory instability, which is responsib
for the formation of solute bands in the solid.

The paper is organized as follows: in Sec. II, the equil
rium of a two-phase system will be analyzed. The dynam
equations of the model will be derived in Sec. III, using t
concepts of the extended irreversible thermodynamics
Sec. IV, we present the scheme for the numerical solution
the model, and in Sec. V the results of the numerical sim
lations will be discussed. The conclusions will follow in Se
VI.

II. EQUILIBRIUM OF A TWO-PHASE SYSTEM

A. Closed systems

Let us consider an ideal solution with componentsA ~sol-
vent! andB ~solute!. The system is assumed in a two-pha
equilibrium, at fixed temperatureT and volumeV; no mass
transfer is allowed through the boundaries ofV, with MA ,
MB , and the total massM5MA1MB being held fixed. The
local state of the system is characterized by a coarse gra
densityr(x,t), the local mass fraction of solutec(x,t), and
a nonconserved order parameterf(x,t) which is assumed to
7-2
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INTERFACE DYNAMICS AND SOLUTE TRAPPING IN . . . PHYSICAL REVIEW E67, 026117 ~2003!
take the valuesf50 in the solid andf51 in the liquid.
Notice that an equivalent description could be given repl
ing r,c with the partial mass densitiesrA5r(12c) and
rB5rc @28#.

We postulate a generalized Helmholtz free energy den
of the form

c8~f,r,c,T,“f,“r,“c!5c~f,r,c,T!1
1

2
eF

2~“f!2

1
1

2
dF

2~“r!21
1

2
hF

2~“c!2,

~1!

wherec(f,r,c,T) is the bulk free energy density and th
gradient terms account for nonlocal contributions in the
terfacial region. We assume thateF ,dF ,hF depend only on
temperature. We wish to derive the equations for the spa
variation of f,r,c. Minimizing the total Helmoltz free en-
ergy, with the constraint of constantsMA ,MB gives

d~F2m0AMA2m0BMB!5dE @c82m0Ar~12c!

2m0Brc#dv50, ~2!

where m0A ,m0B are the Lagrange multipliers for the con
strained problem; the corresponding Euler-Lagrange eq
tions read

eF
2¹2f2

]w

]f
50, dF

2¹2r2
]w

]r
50, hF

2¹2c2
]w

]c
50,

~3!

where

w~f,r,c,T!5c@f~r !,r~r !,c~r !,T#2m0A~T!r~r !@1

2c~r !#2m0B~T!r~r !c~r !. ~4!

Let us consider the planar one-dimensional case, with
solutions depending only on thez coordinate. In the bulk
phases, recalling that]c/]r5(12c)mA1cmB and ]c/]c
5r(mB2mA), wheremA ,mB represent the chemical poten
tial of A or B, Eqs.~3! and ~4! reduce to

mA,s5mA,l5m0A , mB,s5mB,l5m0B , S ]c

]f D
f5fs

5S ]c

]f D
f5f l

50, ~5!

where the subscriptss,l indicate the physical properties i
the bulk solid and liquid phases, respectively. Multiplyin
the three Eqs.~3! by fz ,rz ,cz , respectively, and adding
them together, we obtain, through simple integration

1

2
~eF

2fz
21dF

2rz
21hF

2cz
2!2w~f,r,c,T!5P0~T!. ~6!
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Here P0(T) is clearly the coexistence pressure at te
peratureT, since in the bulk, wherefz ,rz ,cz50 it reduces
to the usual expressionp5r@(12c)mA1cmB#2c. Equa-
tions ~5! and~6! define the chemical and mechanical equili
rium of the two-phase system. Equations~1! and~6! allow to
find a simple expression for the surface tension. We rew
Eq. ~6! as

~eF
2fz

21dF
2rz

21hF
2cz

2!2c8@f~z!,r~z!,c~z!,T#1r@~1

2c!mA1cmB#5P0~T!. ~7!

When Eq.~7! is integrated over the total volume of th
system~from 2L far in the solid to1L far into the liquid!,
it can be written as

F5m0AMA1m0BMB2P0V1gA, ~8!

whereA is the system cross section and the surface tensiog
is given by

g5E
2L

1L

~eF
2fz

21dF
2rz

21hF
2cz

2!dz. ~9!

This result extends to a solid-liquid phase transition w
density change well known results obtained either for flu
fluid interfaces or for solidification without density change

B. Equilibrium for an open system

When the mass constraint is relaxed, the variational pr
lem must refer to the functional@29#

V5E @w8~f,r,c,T,¹f,¹r,¹c!#dv[E Fw~f,r,c,T!

1
1

2
eF

2~“f!2
1

2
dF

2~“r!21
1

2
hF

2~“c!2Gdv, ~10!

wherew(f,r,c,T), is given by Eq.~4!, and reduces to the
grand canonical potential for the bulk phases in equilibriu
The corresponding Euler-Lagrange equations still read@see
Eqs.~3!#

]w8

]f
2

]

]xi
S ]w8

]f i
D50,

]w8

]r
2

]

]xi
S ]w8

]r i
D50,

]w8

]c

2
]

]xi
S ]w8

]ci
D50, ~11!

where f i ,r i ,ci indicate spatial derivatives with respect
the coordinatexi . Here and in the following, the summatio
convention over repeated indexes is used; an explicit dep
dence of the functionw on its variables will be given later.

C. The capillary stress tensor

The equilibrium conditions~11! allow to find a general
expression for the capillary stress tensor. Let us denot] i
[]/]xi , and calculate the gradient of the grand canoni
potential density consideringT as a constant parameter:
7-3
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M. CONTI AND M. FERMANI PHYSICAL REVIEW E 67, 026117 ~2003!
] iw85S ]w8

]f Df i1S ]w8

]r D r i1S ]w8

]c D ci1S ]w8

]fk
Dfki

1S ]w8

]rk
D rki1S ]w8

]ck
D cki . ~12!

Using the Euler-Lagrange equations~11! in Eq. ~12!
yields

] iTik50, ~13!

where

Tik5d ikw82f i S ]w8

]fk
D2r i S ]w8

]rk
D2ci S ]w8

]ck
D5d ikw8

2eF
2f ifk2dF

2r irk2hF
2cick . ~14!

Equation ~13! states the mechanical equilibrium of th
system, in terms of an intrinsically symmetric capillary te
sorT whose components are defined through Eq.~14! (d ik is
the Kronecker symbol!. We show in the following section
that T represents the nondissipative part of the overall str
tensor. An alternative form of Eq.~14! can be given observ
ing that w52p1r(]w/]r) and using the second of Eq
~3!:

Tik5d ikF2p1rdF
2
“

2r1
1

2
eF

2~“f!21
1

2
dF

2~“r!2

1
1

2
hF

2~“c!2G2eF
2f ifk2dF

2r irk2hF
2cick , ~15!

i.e., in the diagonal part ofT the contribution due to the bulk
pressure is clearly decoupled from the interface terms. In
case of a planar interface normal toz, Eq.~14! along with the
Euler-Lagrange conditions yields

Tzz52P0 , Txx5Tyy52P01eF
2f ifk1dF

2r irk

1hF
2cick , Txz5Tyz5Txy50, ~16!

and the surface tension is given by

g5E
2L

1L

~Txx2Tzz!dz. ~17!

Thus we see that the difference between the stress no
to the interface and the tangential stress is the surface ten
per unit length. This result is well known from the analys
of the equilibrium of fluid-fluid interfaces~see, for example
Ref. @30#!, and has been recovered here in a more gen
context. To summarize, for a planar interface the equilibri
profile for the phase, density, and concentration fields is g
erned by

]zTzz50, eF
2fzz2S ]w

]f D50, hF
2czz2S ]w

]c D50,
]r

]t

50, ~18!
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along with the condition of uniform and constant tempe
ture. In the following section, we shall derive the dynam
equations for an out of equilibrium system.

III. THE DYNAMIC EQUATIONS

A. The entropy production rate

We now address the nonequilibrium situation through
thermodynamic procedure, starting from the local balance
mass, momentum, energy, and entropy. Let us denote
velocity field byv, the specific energy bye8, and the specific
entropy bys8. The two latter quantities are determined b
the specific free energyf 8(f,r,c,T,“f,“r,“c,) and in
general involve gradient contributions. The stress tensor
be denoted byP; JE , JS ,JD stand for the energy, entropy
and solute flux vectors, respectively, ands is the entropy
production rate. Finally,g stands for a specific body forc
field. In terms of these variables the classical balance la
read

dr

dt
52r“•v, ~19!

r
dc

dt
52“•JD , ~20!

r
dv

dt
5rg2“•P, ~21!

r
de8

dt
52“•JE2P:“v, ~22!

r
ds8

dt
52“•JS1s. ~23!

The constitutive relations and the explicit form of th
fluxes will follow from the Courie principle and from the
local form of the second law of thermodynamics, which im
plies s>0. In addressing the solid-liquid transition we wi
assume that the solid phase is at rest.

The specific Helmoltz free energy is given by

f 8~f,r,c,T,“f,“r,“c!5
1

r
c8~f,r,c,T,“f,“r,“c!

5 f ~f,r,c,T!1
1

2r
@eF

2~“f!2

1dF
2~“r!21hF

2~“c!2#, ~24!

where f (f,r,c,T)5c(f,r,c,T)/r is the specific bulk free
energy. The nongradient parts of the specific energy and
tropy are defined by

s~f,r,c,e!52
] f

]T
, e~f,r,c,s!5 f ~f,r,c,T!

1Ts~f,r,c,e!. ~25!
7-4
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Similar relations are postulated for the correspond
quantities incorporating gradient terms. Denoting

eS
2[

deF
2

dT
, dS

2[
ddF

2

dT
, hS

2[
dhF

2

dT
, ~26!

eE
25eF

22TeS
2 , dE

25dF
22TdS

2 , hE
25hF

22ThS
2 ,

we obtain from Eq.~24!

s8~f,r,c,e,“f,“r,“c!5s~f,r,c,e!2
1

2r
@eS

2~¹f!2

1dS
2~“r!21hS

2~“c!2#, ~27!

e8~f,r,c,s,“f,“r,“c!5e~f,r,c,s!1
1

2r
@eE

2~“f!2

1dE
2~“r!21hE

2~“c!2#. ~28!

Under the above assumptions the differential form of
second law of thermodynamics reads

T ds85de82
] f

]f
df2

1

r2 Fp2
1

2
eF

2~“f!22
1

2
dF

2~“r!2

2
1

2
hF

2~“c!2Gdr2~mB2mA!dc

2
1

r
@eF

2~“f!d~“f!1dF
2~“r!d~“r!

1hF
2~“c!d~“c!#. ~29!

Combining Eq.~29! with the balance equations~19!, ~21!,
and ~23! yields, after some manipulations

r
ds8

dt
52

“•JE

T
2

eF
2

T
“•S df

dt
“f D2

dF
2

T
“•S dr

dt
“r D

2
hF

2

T
“•S dc

dt
“cD2

1

T

df

dt S r
] f

]f
2eF

2
“

2f D
2

1

T
~Pik1Tik!] ivk1

~mB2mA!

T
“•JD

1
hF

2
“

2c

T

dc

dt
, ~30!

whereTik is the capillary stress tensor defined by Eq.~15!
and rewritten, out of equilibrium, as

Tik5d ikS w82r
dV

dr D2eF
2f ifk2dF

2r irk2hF
2cick .

~31!

We can rearrange Eq.~30! according to the entropy bal
ance equation~23! adopting an entropy flux
02611
g

e

JS5
1

TH JE1eF
2 df

dt
“f1dF

2 dr

dt
“r1hF

2 dc

dt
“c1F ~mB2mA!

1
~hF

2
“

2c!

r GJDJ . ~32!

Finally we find

r
ds8

dt
52“•JS1s, ~33!

where the entropy production rates is given by

s52
1

T

df

dt S r
] f

]f
2eF

2
“

2f D1JE•“S 1

TD
1

df

dt
“f•“S eF

2

T D 1
dr

dt
“r•“S dF

2

T D 1
dc

dt
“c•“S hF

2

T D
1JD•“F ~mA2mB!

T
1hF

2 ¹2c

rT G2
1

T
~P1T!:“v. ~34!

As observed by Charach and Fife@31#, the nonclassical
contributions of the above equation~third, fourth, and fifth
terms in the right-hand side! can be treated, according to th
Courier’s principle, as either of vectorial or of scalar origi
depending on the way in which the corresponding thermo
namic forces or fluxes are defined. However, to simplify t
discussion, extending the choice of Wanget al. in their
model for solidification at constant density@9#, we assume
that eE

25dE
25hE

250, so thate5e8, and eS
2 ,dS

2 ,hS
25const.

Moreover, in the sequel we shall neglect the spatial variat
of eF

2 , dF
2 , andhF

2 , which amounts to neglect the therm
gradient across the interface. Then, the constraint of lo
positive entropy production reduces to

df

dt
52GS r

] f

]f
2eF

2¹2f D , ~35!

JE52K“T, ~36!

JD5Mc“F ~mA2mB!

T
1hF

2 ¹2c

rT G , ~37!

where Mc ,G are positive constants andK is the thermal
conductivity. Moreover, assuming that the tensor contrib
tion is only amenable to viscous dissipation, we obtain

P52T2P, ~38!

with P indicating the standard stress tensor for viscous
ids. We anticipate here that in the following we shall co
sider the solid phase as an isotropic fluid with a viscos
much larger than that of the liquid phase.

B. The thermodynamic potential

To proceed further we need an explicit form for the sp
cific free energyf. At first, we construct a suitable expressio
for a pure substance. In this case the potential should take
7-5
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form of a double well over ther,f plane, with the two
minima centered at the bulk solid (r5rs0 ,f50) and liquid
(r5r l0 ,f51), where we denoted asrs0 , r l0 the equilib-
rium densities in the two phases at some reference temp
ture T0 and pressurep0. We start from a linearized equatio
of state of the type

r2r052br0~T2T0!1kr0~p1P2p0!, ~39!

where b is the thermal expansion coefficient andk is the
isothermal compressibility;p is the thermodynamic pressur
given byp5r2(] f /]r) andP is the excess pressure due
the capillary stress. In the case of a planar interface norm
z, the latter is written asP5(eF

2fz
21dF

2rz
21hF

2cz
2)/2

2rdF
2rzz.

An expression of the free energy, consistent with Eq.~39!
may be written as

f ~r,f,T!5
ag~f!

r
1

b

k
~T2T0!Fr2r0~f!

rr0~f! G1~p02P!

3Fr2r0~f!

rr0~f! G2CT ln
T

T0
1C~T2T0!

1p~f!L0S 12
T

T0
D2

~p02P!

r0~f!

1
r0~f!

2k Fr2r0~f!

rr0~f! G2

, ~40!

with g(f)5(1/4)f2(12f)2. In Eq. ~40!, C is the specific
heat andL0 is the latent heat per unit mass in the referen
state. We observe a Landau-Ginzburg contribution for
order parameterf ~first term in the right-hand side of th
equation!, and the elastic contribution of the last term. Alon
the way followed by Ref.@23# we shall neglect in the pres
sure field the contribution due to the density dependenc
the well height. The functionp(f) is monotonic and increas
ing with f, assuming the valuesp(0)50, p(1)51, and
describes the transition of the free energy from the solid
the liquid phase. Choosingp(f)5f3(10215f16f2) fixes
the bulk solid and liquid to the valuesf50 andf51, re-
spectively, for every value of temperature. The equilibriu
densityr0(f) is assumed to change in the interfacial regi
asr0[r0(f)5rs01p(f)(r l02rs0).

For an ideal binary alloy, the specific free energy is wr
ten as

f 5~12c!F f A1
RT

M̄
ln~12c!G1cF f B1

RT

M̄
ln cG , ~41!

where R is the gas constant, andf A , f B represent the free
energy of the pure componentsA andB obtained by replac-
ing in Eq. ~40! the material parameters with the ones of t
solvent and the solute, respectively, and the equilibrium d
sity with

r0~f!5
r0Ar0B

~12c!r0B1cr0A
. ~42!
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To simplify the discussion, here and in the sequel we
glect the difference of the molar massM̄ of the two compo-
nents, assumingM̄A5M̄B[M̄ , that means to identify the
molar concentration with the mass fraction.

Then, the solute fluxJD may be expressed as

JD52
McR

M̄c~12c!
“c1Mc“S hF

2

rT
“

2cD
1Mc“H ~aA2aB!

rT
g~f!1

p~f!

T FL0AS 12
T

T0A
D

2L0BS 12
T

T0B
D G J . ~43!

We recover the standard definition of the solute diffusiv
Dc taking

Dc5
McR

rM̄c~12c!
. ~44!

As the solute diffusivity is quite different in the solid an
liquid phases, in the followingDc will be taken asDc5Ds
1p(f)(Dl2Ds), Dl and Ds being the diffusivities in the
liquid and in the solid, respectively. In the same spirit w
represent the local viscosity ash5hs1p(f)(h l2hs), with
hs@h l .

To complete the model we assume that, along a so
liquid transition, the internal energy changes as

e[~12c!eA1ceB5~12c!esB1cesB1p~f!@~12c!L0A

1cL0B#. ~45!

Then, Eqs.~19!–~22! and ~35!, along with specifications
~36!, ~38!, ~43!, and ~45!, represent the evolution equation
for the system.

C. Nondimensional equations in one dimension

The governing equations can be written in nondime
sional form adopting a reference lengthj and scaling time to
t5j2/Dl . Density is scaled tor l0A and a nondimensiona
temperature is introduced asu5Cp(T2T0A)/L0A , whereCp
is the the specific heat at constant pressure. Pressure an
components of the stress tensor are scaled tor l0Av0

2, where
v05j/t is the natural reference for velocities. Notice that
the following we neglect thermal expansion effects and
assume equal compressibilities in both phases. Retaining
simplicity the same symbols for the scaled~nondimensional!
quantities, and in absence of body forces, the model eq
tions in one dimension read

]r

]t
1v

]r

]z
52r

]v
]z

, ~46!
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]f

]t
1v

]f

]z
5m

]2f

]z2 2
m

ẽ2
g8~f!@~12c!1cv1#

2rp8~f!b1F ~12c!S 12
T

T0A
D1cv2S 1

2
T

T0B
D G2

1

2
b2rp8~f!@~12c!~12SA!1c~E

2SB!#S r0
22r2

r2r0
2 D , ~47!

r
]v
]t

1rv
]v
]z

52“•Fb3

~r2r0!

r G1b4

]

]zS l1~f!
]v
]zD ,

~48!

r
]c

]t
1rv

]c

]z
52

]

]z
l2~f!rc~12c!

]

]zH ln
12c

c

1
T0A

T
b5g~f!~12v1!1

T0A

T
p~f!

3S b1b5

ẽ2

m
D F S 12

T

T0A
D2v2S 12

T

T0B
D G

1
T0A

T

b6

r

]2c

]z2J , ~49!

]u

]t
1v

]u

]z
52p8~f!@~12c!1cv2#S ]f

]t
1v

]f

]z D1
DT

Dl

]2u

]z2

1
b2b4

rb1b3
S ]v

]zD 2

, ~50!

whereDT is the thermal diffusivity, and the functionsl1(f)
and l2(f) are defined asl1(f)511@12p(f)#@(hs /h l)
21# andl2(f)5(Ds /Dl)1p(f)@12(Ds /Dl)#.

The model parameters are defined as

m5
GeF

2t

j2
, ẽ25

eF
2

aAj2 , b15Gtr l0AL0A , b25
Gt

k
,

b35
1

kr l0Av0
2 , ~51!

b45
h l

tr l0Av0
2 , b55

aAM̄

r l0ART0A
, b65

hF
2M̄

r l0Aj2RT0A
,

b75
dF

2r l0A

j2v0
2 ,

v15
aB

aA
, v25

L0B

L0A
, SA5

rs0A

r l0A
, SB5

rs0B

r l0A
,

E5
r l0B

r l0A
.
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Notice that imposingSA5SB5E51, the density effects
are ruled out; if, in addition, we posec50 or c51 we re-
cover the classic phase-field description for the solidificat
of a pure substance (A or B, respectively!. In this case the
model parameterseF ,aA,B ,G can be related to the materia
properties through@32#

eF
256A2sAhA56A2sBhB , aA56A2

sA

hA
, ~52!

aB56A2
sB

hB
, G5

mAsAT0A

rALAeF
2 5

mBsBT0B

rBLBeF
2 ,

whereh is the interface width,s is the surface tension, an
m is the kinetic undercooling coefficient that relates the
terface undercooling to the interface velocityv through v
5m(T02T). We assume that the above equations still re
resent a good estimation of the model parameters in term
the thermophysical properties of the material. As we did
allow G, eF to depend on concentration, we force the tw
conditions sAhA5sBhB and mAT0A /(hArALA)
5mBT0B /(hBrBLB). In case thathA;hB , the latter is ame-
nable to the reasonable assumption that the interface velo
should result proportional to the free energy jump across
interface; indeed, for a nickel-copper alloy the condition
verified within 1%. To estimatedF , hF we assume equa
contributions of the gradient terms to the surface tension,
r l

2dF
25eF

25hF
2 . To conduct the numerical simulations w

referred to the phase diagram of a nickel~solvent! and cop-
per ~solute! binary alloy. The interface thickness has be
chosen ashA51631028 cm, and the length scale isj52
31024 cm. The resulting values of the nondimension
model parameters are summarized in Table I.

IV. THE NUMERICAL METHOD

We conducted two sets of numerical experiments. At fi
we solved the one-dimensional equations~46!–~49! at fixed
and uniform temperature. Then, we simulated a directio

TABLE I. Values of the model parameters.

Parameter Value

SA 1.051
SB 1.026
E 0.983
v1 5.72731021

v2 6.91031021

m 466

ẽ 831024

b1 8.4843108

b2 6.68131010

b3 9.23131013

b4 1.2823103

b5 1.071
b6 6.85331027

b7 6.4403105
7-7
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solidification process in which the phase transition is driv
by a temperature field moving at constant speedVP , and
characterized by a uniform gradientG.0 @in this case, Eq.
~50! is modified as]u/]t52VPG]. In both cases, the un
derlying assumption is that heat diffusion is much faster th
solute diffusion, so that the temperature field can be dec
pled from the concentration and the phase fields.

The equations have been solved on the computationa
main 0<z<zm . Initially, a phase boundary atz5z0 sepa-
rates a solid region (z,z0 ,f50) from the liquid region (z
.z0 ,f51). The density in the two phases is selected at
minimum of the potential, and the system is initially at re
i.e., v(z,0)50. In the first set of simulations~fixed tempera-
ture!, the concentration is initially uniform below the liqu
dus line. For directional solidification, the initial concentr
tion in the two phases is fixed at the equilibrium valu
corresponding to the initial interface temperature. For
phase, density, and concentration fields we imposed N
mann boundary conditions; the velocity is fixed asv(0,t)
50 at the left end of the solid, while we chose (]v/]z)50
at z5zm . To advance the solution forward in time, we em
ployed an explicit Euler integration scheme for the dens
concentration, and phase-field equations. To allow the co
tion hs@h l , which results in a large diffusion term in th
momentum equation, the latter was integrated with a Cra
Nicolson implicit scheme. Second-order central differen
were used to discretize the Laplace operator, and upw
differences for the convective terms. To ensure an accu
resolution of the solid-liquid interface, the grid spacing w
selected asDz50.25ẽ; the time step required for numerica
stability is Dt50.12310210. Following a standard metho
in computational fluid dynamics, the velocity field wa
solved on a computational grid shifted ofDz/2 with respect
to the one used for the scalar fields.

V. THE NUMERICAL RESULTS

A. Isothermal growth

We first checked whether the model gives a consis
description of the mechanical effects due to the den
change in solidification. To this aim we solved the mod
equations at constant temperature, fixing our attention to
mechanical relaxation of the system. The far-field concen
tion is c050.072 14, and the temperature is selected aT
51700 K. This value is well below theT0 line ~the locus
where the Helmoltz free energies of the liquid and the so
are equal: atc5c0 we haveT051704.32 K), ensuring a
steady growth regime. The contraction of the liquid in fro
of the interface originates a pressure wave that propag
both into the solid and into the liquid. This effect is illus
trated in Fig. 1, where only the liquid portion of the system
shown. The solid-liquid interface is located nearz50.64
~here and in the following, except for temperature, all t
numerical results will be presented in nondimensional for!,
and the pressure field is represented at different times.
initial pressure was initialized asp(z,0)50, and we see the
negative pressure front that propagates into the liquid.
velocity of the wave, estimated tracking the position of t
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wave front, resultsvs59.603106; this value is in excellent
agreement with the theoretical one for the liquid in equil
rium, assumed as a pure elastic medium: the latter
A]p/]r5Ar l0Ab3 /r l059.613106.

After a short transient, these growth conditions result i
steady advancement of the solid-liquid interface. In Fi
2~a!–2~d!, we show the phase, density, velocity, and conc
tration profiles obtained at different times. We observe t
the solid is at rest, while the liquid is advected towards
interface with a velocityv52601.81. The interface veloc
ity, as resulting from the numerical data, isv I511 927. No-
tice that this is the same value fixed by the mass conserva
law through the relationv5(12rs0 /r l0)v I . The solid con-
centration iscs5c0, while on the liquid side of the interface
the concentration peak iscl50.072 67. We see that the trap
ping of solute results in a dynamic partition coefficientk
5cs /cl50.993, far from equilibrium valueke50.795.

At higher temperatures, as theT0 line is approached from
below, we observed the expected transition from the kine
to the diffusive regime. We want now to draw the attenti
on an interesting point. The flow effects result in a slow
interface dynamics~see, for example Ref.@33#!. Then, we
may expect that in the dynamic phase diagram~in the T,c
plane! steady state solutions, due to density change, could
pushed into the region of diffusive regimes. This effect
illustrated in Fig. 3, where the growth rate is represen
versus time, atT51703 K. The upper set of data shows th
kinetic ~steady! growth obtained without density change~i.e.,
fixing SA5SB5E51). In the lower curve we accounted fo
the density effects, fixingSA5SB50.8, E51; in this case
the late stage growth is characterized by the diffusive l
v I;t21/2.

FIG. 1. The pressure wave originated at the solid-liquid int
face. The interface is located nearz50.64, and the different curve
represent the pressure field at times 1.531028, 3.031028, and
4.531028 from left to right. The wave speed isvs59.603106. The
model parameters are specified in Table I.
7-8
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FIG. 2. The phase~a!, density~b!, velocity ~c!, and concentration~d! fields at different times. The curves are taken att51.231025,t
51.831025,2.431025 from left to right. The model parameters are specified in Table I.
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B. Directional solidification

The aim of this set of simulations is to determine how a
to what extent the volume difference of the two phases
fects the trapping of solute and the temperature of the so
liquid interface.

The initial concentration of the alloy is set tocs0
50.056 097 for the solid phase (z,z0) and cl050.070 686
for the liquid phase (z.z0). This corresponds to an equilib
rium temperatureTI51705.71 K. Then the initial tempera
ture profile, defined as

T~z,0!5TI1G~z2z0! ~53!

is pulled towards the positivez direction with constant ve-
locity VP . After a transient, the solidification front selects
02611
d
f-
d-

steady interface temperatureTI , following the advancing
isotherms with their same velocity, and the solid phase gro
with uniform concentrationcl0. The solute segregation o
the moving front is evaluated computing the peak ofc(z,t),
which identifies the concentrationcl on the liquid side of the
interface.

We recall that the segregation of solute is interpreted a
diffusive process across the interface, characterized by a
locity scalevd5D/a, whereD is the solute diffusivity anda
is the interface width. The dependence of the partition co
ficient on the growth velocity takes the form@34,35#

k~v I !5
ke1v I /vd

11v I /vd
. ~54!
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In this perspective, the solute segregation could only
affected by a change of the solute transition layer. Figu
4~a! and 4~b! show the concentration field obtained in stea
conditions with and without density change, respectively.
both cases we haveG5200 K andVP5800. Notice that the
solute profile is almost unaffected by the flow field. Then,
do not expect significant effects of the density change on
k(v I) dependence. This prediction is confirmed in Fig.
which shows the ~normalized! partition coefficient (k
2ke)/(12ke) versus the growth rate; the different curv
are taken withE51 andSA5SB ranging from 1 to 1.2. We
observe that the curves are very close to each other, an
k values do not differ for more than 5%.

The dependence of the interface temperature on the in
face velocity exhibits a nonmonotonic behavior: due to s
pression of solute partitioning~and to the reduction of solut
concentration on the liquid side of the interface!, at low ve-
locitiesTI(v I) first rises, then falls with increasingv I reflect-
ing the increasing undercooling required to advance the
lidification front. In the previous analysis, we observed th
the density effects have almost no influence on the trapp
of solute, while they induce a significant dissipation in t
interface dynamics. As a result, the descending branch o
TI(v I) curve should be pushed towards lower temperatu
and the maximum of the curve should migrate towards low
velocities. This effect is shown in Fig. 6, where the interfa
temperature is shown versus the interface velocity;
curves are taken with the same values ofE,SA ,SB used in
Fig. 5. Notice the strong undercooling which characteri
the high velocity branch of the curves, as the change of v
ume increases. We should also observe that this beha
extends its effects into other fields of the solidification ph
nomenology: for example, the onset of the oscillatory ins

FIG. 3. The growth rate forT51703 K. The upper curve (SA

5SB5E51) shows the steady regime when density effects
neglected. The flow field shifts the growth regime into the diffus
region ~lower curve,SA5SB50.8, E51).
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bility, which is responsible for the band formation at larg
growth rates, should be shifted by the density effects towa
lower velocities.

VI. CONCLUSIONS

The classical phase-field model is a well established t
to describe solidification far from equilibrium, of both pur
substances and binary solutions. However, this method
been exploited assuming equal densities of the solid and
uid phases. In the model presented in this paper, for

e

FIG. 4. The solute field in directional solidification withG
5200 K andVP5800. The upper curve~a! is obtained withSA

5SB5E51, the lower curve~b! with SA5SB51.15, E51. The
model parameters are specified in Table I.
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solidification of a binary alloy, this limitation is removed
allowing one to describe the propagation of density wa
and the advected flow field. The equations of the model h
been derived imposing local positive entropy production, a
reduce to the classical formulation for equal solid and liq
densities. The numerical solution of the governing equati
shows that the sound wave propagation, the interfacial

FIG. 5. The~normalized! partition coefficient (k2ke)/(12ke)
vs the growth rate; the different curves are taken withE51 and
SA5SB51.00,1.05,1.10,1.15,1.20.
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namics, and the flow field are properly described. T
change of density at the interface has negligible effects
the structure of the solute field; as a consequence the t
ping of solute is almost unaffected. On the other side,
slower interface dynamics induced by the flow field exten
the stable branch of theTI(v I) curve towards lower veloci-
ties. This reduces the region of the parameters’ space w
the oscillatory instability could be observed.

FIG. 6. The interface temperature vs the interface velocity. T
curves are obtained withE51 andSA5SB ; from top to down we
haveSA5SB51.00,1.05,1.10,1.15,1.20.
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