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Interface dynamics and solute trapping in alloy solidification with density change
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We present a phase-field model for the solidification of a binary alloy, which incorporates hydrodynamic
effects due to the different densities of the solid and liquid phases. We start from a generalized thermodynamic
potential with squared gradient terms for the associated fields; the condition of local positive entropy produc-
tion is then utilized to derive a set of equations that drive the system towards equilibrium. The model has been
numerically solved in one dimension, to investigate the effects of the flow field on the interface dynamics. We
observed that solute trapping is almost unaffected by the fluid advection, while the interface mobility is
strongly reduced as the fluid velocity increases. This reflects on the dependence of the interface terniperature
on the growth rate, : the region of the unstabl@scending branch is reduced, and the maximum of the
T,(v,) curve is shifted towards lower velocities.
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[. INTRODUCTION the interface velocity is free of singularities during the entire
freezing process.

The growth of a crystal from the melt is a complex phe- The above studies were based on the notion of a sharp
nomenon that involves many physical effects. The rejectionnterface separating the two phases; the governing equations
of the latent heatand solute, for alloy solidificationaway of the model express the conservation of mass, momentum,
from the solid-liquid interface, is accompanied by the forma-and energy in each of the bulk phases, with proper interface
tion of thermal and solute boundary layers which stronglyboundary conditions. With respect to the original Stefan
affect the morphological instability of the interface. More- problem, the latter must incorporate additional constraints
over, across the interface the density changes solid is for the mass and momentum conservation.
genera”y denser than the ||ql)ld:he Change ranges from a A more recent approach to the density effects in solidifi-
few percent for simple metals to more than 20% for sometation _is based on the pliffuse interface picture, through_an
eutectic mixtures. The shrinking, or in some cases the dila€xtension of the phase-field model. In the classic formulation
tation, of the system causes an advection flow in the liqui®f the model, a nonconserved order parameftex,t) char-
phase. Then, even in absence of gravity, the purely diffusiv cterizes the phase of the_ system at each point. A S'“!'table
picture for the conserved fields in the bulk phases should b ee energyor entropy functional is then constructed, Wh'Ch.
extended, to incorporate hydrodynamic effects. Recently, thi epends on.the order parameter as well as on the associate

i . . . conservetlfields and their gradients. The extremization of
subject attracted an increased attention for practical reasor

The reduction in volume in metal solidification is a source of '@ functional with respect to these variables results in the
L . ... dynamic equations for the evolution of the process. Studies
stress at the growing interface, and may induce cavitatio

) , . X "eonducted on solidification of both pure substances and bi-
with formation of defects or micropores in cast productsnary alloys[5—18] pointed out that the model incorporates in
[1,2]. Afurther effect results from the dynamic pressure drop, nagyral fashion the effects of the interface curvature and
across the melt: at large growth rates, the change of the me'ﬁonequilibrium phenomena as the trapping of solute into the
ing temperature with pressure may significantly alter the unsglid phase and the kinetic undercooling of the solid-liquid
dercooling of the liquid phase. interface. Within this approach, complex phenomena as the
Hydrodynamic effects in solidification far from equilib- formation of solute bands in solidification far from equilib-
rium have been previously considered by Horf&y for a  rium and the groove instability in cellular growfd9—21]
pure material. Using a free-boundary approach, he studiedere described and interpreted. Moreover, the interfacial re-
the growth of a spherical nucleus into an undercooled melt ofjion is spread along a finite thickness, which gives a more
lower density. The liquid phase was treated as an incomratural and consistent picture of the solidification front.
pressible inviscid fluid with a transition temperature affected An extension of the phase-field model to incorporate flow
by both the curvature of the nucleus and the hydrodynamieffects was first proposed by Caginalp and Jof#%23|.
pressure due to the flow. The numerical solution of thisThey derived a system of differential equations for the vari-
model led Horvay to conclude that at large undercooling theables temperature, order parameter, fluid velocity, density,
tension field at the interface could induce a change in th@nd pressure. In the momentum equation, capillary and vis-
microstructure of the solid. A similar analysis was subse-cosity effects were neglected. An asymptotic analysis
quently conducted by Charach and Rubinstilf for the  showed the effects of the advection flow on the interface
growth of a planar interface. These authors showed that, dugnetics.
to the effects of the pressure field, some inconsistencies of In a subsequent study, Oxtoj@4] considered density
the Stefan formulation of the problem could be removed anadthange effects in crystal growth starting from a thermody-
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namic potential in which, besides the nonconserved phas&tart identifying a suitable grand canonical potential whose
field, also the local density is regarded as &conserveyl  natural variables are the order parameter, density, solute con-
order parameter. The dynamic equation for the growth rat€entration, and temperature. The entropy production equa-
results from the extremization of the potential with respect tdion, coupled with the balance of mass, momentum, and en-
the phase field, and the Navier-Stokes equation is written i€r9y, is used to derive governing equations that drive the
the interfacial region using an expression for the capillarySystem towards equilibrium. The scalar part of the entropy
stress tensor that is derived resorting to density functionaproduction fixes the dynamic equation for the structural or-
arguments. Then, the coupled problem to determine thder parameter. Thg vector contnbu'uc_)ns reduce in the bulk
growth rate and the flow field is stated through the abovéPhases to the classic Fourier expression for the heat flux and
equations and the mass conservation condition. Steady stdf the Fick's law for the solute diffusion. A third term, of
solutions of the model, obtained in isothermal conditions, puf€nsorial character, allows to find an expression for the stress
in evidence the role of sound modes in density transport. tensor, startmg from tne gssnmpnon that this contnbut_lon is
Andersonet al. [25] developed a phase-field model with only due to viscous dissipation. This forr_n_ of the capillary
convection in the melt, deriving an expression for the stresf€nsor satisfies the Euler-Lagrange conditions for the grand
tensor within the arguments of the extended irreversible thef€@nonical potential when the system is in equilibrium.
modynamics. The problem was treated in the quasi- 1h€ equations of the model have been solved numerically
incompressibility approximation, neglecting the pressure de!l ©n€ dimension, both in the isothermal limit and simulating
pendence of the local density, which is assumed uniform irf (_jlrecnonal solidification experiment. The anm_of our simu-
the two bulk phases. The condition of positive entropy Ioro_Iatlons was to check whether flow effects significantly alter

duction, along with the conservation equations for mass, mot€ interface dynamics and the nonequilibrium solute redis-
mentum, and energy, was employed to derive the governingb“t'on across the moving front. This latter phenomenon,
equations of the model. In a subsequent study, the same atg'med “solute trapping,” reflects on the behavior of the par-
thors[26] examined the sharp interface limit of the model. tition coefficientk (the ratio of the solute concentration in the
Their analysis recovered the standard interfacial conditiongJWing solid to that in the liquid at the interfacevhich

including the Young-Laplace and Clausius-Clapeyron equadeviates from its equilibrium valuk, , approaching unity at
tions for the mechanical and chemical equilibrium at the in-@rge growth rates. We observe that the advection flow does
terface. not alter the structure of the solid-liquid interface. Then, the

Conti [27] followed a different approach, starting from a interface solute segregation and t.he trapping phenomenon
grand canonical potential which includes the local density a&'® almost unaffected by the flow field. On the contrary, the
a dynamic variable. Square gradient terms were allowed fofterface mobility is strongly reduced as the fluid velocity
both the structural order parameter and the density field. Thiicreases. This reflects on the dependence of the interface
stress tensor was derived assuming that any dissipation &mperaturel;, on the growth rate, : the region of the un-
tensorial order should be ascribed to the fluid viscosity. InStaPle(ascending branch is reduced, and the maximum of
this formulation, the pressure field is consistently related tghe Ti(vi) curve is found at lower velocities. As a conse-
the local density via an equation of state. The model equaduence, for isothermal growth the border between the steady
tions for the order parameter and the local density, momen@nd the diffusive regime is slightly shifted. In directional
tum, and energy allow to describe the solidification processelidification, the change of thg,(v,) curve should affect
and the flow field, including the propagation of elastic the onset of t_he oscillatory |nstan|llty, whlqh is responsible
waves. The model was numerically solved in one dimensiofOr the formation of solute bands in the solid. 3
to assess the effects of the fluid convection on the growth The paper is organized as follows: in Sec. Il, the equilib-
dynamics. In the early stage of the growth, significant devialium of a two-phase system will be analyzed. The dynamic
tions were observed with respect to the standard diffusiv€duations of the model will be derived in Sec. IIl, using the
dynamics; these effects may become important in the inteleoncepts of the extended irreversible therm_odynamlgs. In
pretation of nucleation and postnucleation processes. At lata®c. IV, we present the scheme for the numerical solution of
times, when the pressure waves are reabsorbed, the interfa® model, and in Sec. V the results of the numerical simu-
velocity evolves with a power law very close to the diffusive lations will be discussed. The conclusions will follow in Sec.
dependence-t. VL.

The extension of the phase-field model to incorporate hy-
drodynamic effects has been limited in the past to the solidi- Il. EQUILIBRIUM OF A TWO-PHASE SYSTEM
fication of pure substances. As many advanced materials uti-
lize alloys with properties highly sensitive to the growth
conditions, a further step should consider the extension of Let us consider an ideal solution with componehtsol-
the model to alloy solidification. vend andB (solute. The system is assumed in a two-phase

In this paper, we present a phase-field model for alloyequilibrium, at fixed temperatur€ and volumeV; no mass
solidification that incorporates in a thermodynamically con-transfer is allowed through the boundaries\gfwith M4,
sistent way flow effects due to density change. The solidVig, and the total massl =M 4+ Mg being held fixed. The
phase is modeled as an isotropic fluid with a viscosity mucHocal state of the system is characterized by a coarse grained
larger than that of the liquid. The model extends our previouslensityp(x,t), the local mass fraction of solut€x,t), and
study [27] aimed at solidification of pure substances. Wea nonconserved order parameifx,t) which is assumed to

A. Closed systems
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take the valuesp)=0 in the solid and¢$=1 in the liquid. Here Po(T) is clearly the coexistence pressure at tem-
Notice that an equivalent description could be given replacperatureT, since in the bulk, where,,p,,c,=0 it reduces
ing p,c with the partial mass densities,=p(1—c) and to the usual expressiop=p[(l—c)uas+cCcug]— . Equa-

pg=pcC [28]. tions (5) and(6) define the chemical and mechanical equilib-
We postulate a generalized Helmholtz free energy densityium of the two-phase system. Equatiqi$ and(6) allow to
of the form find a simple expression for the surface tension. We rewrite
L Eq. (6) as
! — 4= 2 2 ,
Vi@ eT.VVp.VO)=¢dp.CT) 45 €R(V ) (€2 p2+ 2p2+ n2cd)— ' [ #(2).p(2),0(2), TT+p[(1
—C)puatCug]=Po(T). (7)

1. 2.1 5 2
+§5F(VP) +§7IF(VC) )
When Eq.(7) is integrated over the total volume of the

(1) system(from —L far in the solid to+L far into the liquid,

it can be written as
where ¢(¢,p,c,T) is the bulk free energy density and the

gradient terms account for nonlocal contributions in the in- F=uoaMat+ mogMg—PoV+ YA, (8)
terfacial region. We assume that , 5 , 7 depend only on

temperature. We wish to derive the equations for the spatiahereA is the system cross section and the surface tengion
variation of ¢,p,c. Minimizing the total Helmoltz free en- is given by

ergy, with the constraint of constant, ,Mg gives

+L

y= [ (o stoi mhchaz ©
’ —-L
5(F_MOAMA_MOBMB):5J [#' = moap(1—c)
This result extends to a solid-liquid phase transition with

— ioppCldv=0, 2 density change well known results obtained either for fluid-

o fluid interfaces or for solidification without density change.
where uoa,og are the Lagrange multipliers for the con-

strained problem; the corresponding Euler-Lagrange equa- B. Equilibrium for an open system

tions read
When the mass constraint is relaxed, the variational prob-
202 ow _0 82v%_ ow . 2020 ow 0 lem must refer to the functiongR9]
€F¢[7¢_:FP(3P—77IFC(90—:
3 sz [w'(¢,p,c,T,v¢,vp,Vc)]duEf {W(cﬁ,p,c,T)
where 1 1 1
+=€2(V)?= 82(Vp)2+ = n2(Ve)?|dv, 10
W(.p,C.T) = (1), p(r),c(r),T]= poa(T)p(r)[1 2 F(VE)"5 (Vo) ™+ 5 7p(Ve)yjdo, (10
—c(r)]— pos(T)p(r)c(r). (4)  wherew(,p,c,T), is given by Eq.(4), and reduces to the

. . . . rand canonical potential for the bulk phases in equilibrium.
Let us consider the planar one-dimensional case, with th he corresponding Euler-Lagrange equations still ress
solutions depending only on the coordinate. In the bulk Egs.(3)]
phases, recalling thaty/dp=(1—c)ua+cug and diyldc '

=p(ug— pma), Whereun,upg represent the chemical poten- aw' 9 (gwr) aw' 9 <3W’) aw'’

tial of A or B, Egs.(3) and(4) reduce to —

ap  axi\ad|  ap  ox\dp|  dc
MAs= HA = MB,s= MB, = M1 ((w) 9 [ w 0 11
ST HMAIT , ST MBIT I Ry =
A,s A 0A B,s B 0B i mo, x| ac, ) (13)
9y B where ¢; ,p; ,C; indicate spatial derivatives with respect to
oo s =0, ®  the coordinate; . Here and in the following, the summation
=9

convention over repeated indexes is used; an explicit depen-

where the subscripts,| indicate the physical properties in dence of the functionv on its variables will be given later.

the bulk solid and liquid phases, respectively. Multiplying )

the three Eqs(3) by ¢,,p,.c,, respectively, and adding C. The capillary stress tensor

them together, we obtain, through simple integration The equilibrium conditiong11) allow to find a general
expression for the capillary stress tensor. Let us denpte
=4/9x;, and calculate the gradient of the grand canonical

1
2 4,2 2 2.2
+ + —W T)=Py(T). ! - S
€kt Sept mEch) ~W(ip.c.T)=Po(T).  (6) potential density considering as a constant parameter:

E(
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. aw’) aw) (aw’) (aw)

W —(W ot ( p pit| |Gt i Pii
ow’ oW
9Pk )Pkl (070 )Ckl (12

Using the Euler-Lagrange equatioril) in Eq. (12)
yields

aiTik=0, (13)
where
ow’ ow’ ow’ ,
Tik= W' — ¢; 0(1’ —Pi (9p i (9_Ck = iW
— €7 ¢ bi— Oepipk— MECiCk- (14)

Equation (13) states the mechanical equilibrium of the
system, in terms of an intrinsically symmetric capillary ten-

sorT whose components are defined through @4) (5 is
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along with the condition of uniform and constant tempera-
ture. In the following section, we shall derive the dynamic
equations for an out of equilibrium system.

Ill. THE DYNAMIC EQUATIONS
A. The entropy production rate

We now address the nonequilibrium situation through a
thermodynamic procedure, starting from the local balance of
mass, momentum, energy, and entropy. Let us denote the
velocity field byv, the specific energy bg’, and the specific
entropy bys’. The two latter quantities are determined by
the specific free energy’(¢,p,c,T,V$,Vp,Vc,) and in
general involve gradient contributions. The stress tensor will
be denoted byP; Je, Jg,Jp stand for the energy, entropy,
and solute flux vectors, respectively, andis the entropy
production rate. Finallyg stands for a specific body force
field. In terms of these variables the classical balance laws
read

d
the Kronecker symb@l We show in the following section d—ft):—pV-v, (19
thatT represents the nondissipative part of the overall stress
tensor. An alternative form of Eq14) can be given observ- d
|(r:13g)11 thatw= —p+ p(dw/dp) and using the second of Egs. pd_(t:z ~V.Jp, (20)
1 1 dv
Tik= 5ik[_p+P5 Vip+ €F(V¢) +50 2(Vp)? P PI-V-P (21)
L 2(Vc)?| - ek h— 2pipi— micick, (15) de’
277F F®Pi Pk FPiPk— MrLiCk, pW:_V'JE_P:VV, (22)
e., in the diagonal part of the contribution due to the bulk ,
pressure is clearly decoupled from the interface terms. In the pd_s —_V.Jto. (23)
case of a planar interface normaladEg. (14) along with the dt s

Euler-Lagrange conditions yields
The constitutive relations and the explicit form of the

T,,=—Po,  Tx=Tyy=—Po+ €2 didu+ 52pipk fluxes will follow from the Courie principle and from the
5 local form of the second law of thermodynamics, which im-
T 7ECiCk,  Tx= Ty, =Txy=0, (16)  plieso=0. In addressing the solid-liquid transition we will
o assume that the solid phase is at rest.
and the surface tension is given by The specific Helmoltz free energy is given by
+L 1
7T L( o 1220z A0 F(4p e T VAP VO)= 0 (4pCT.V6.Vp,VC)

Thus we see that the difference between the stress normal
to the interface and the tangential stress is the surface tension
per unit length. This result is well known from the analysis
of the equilibrium of fluid-fluid interface¢see, for example,
Ref. [30]), and has been recovered here in a more general
context. To summarize, for a planar interface the equilibriumwheref(¢,p,c,T)=(¢,p,c,T)/p is the specific bulk free
profile for the phase, density, and concentration fields is govenergy. The nongradient parts of the specific energy and en-

=f cT)+i 2(V )2
- (¢!p' 1 Zp[EF ¢

+85(Vp)2+ nE(Ve)?], (24)

erned by tropy are defined by
) aw ) W ap of
d,17,~=0, EF¢zz_ % =0, NECz— E =0, E S(d”P-Cae):_a_Tv e((b,p,C,S):f(d),p,C,T)
=0, (18) +Ts(¢,p,c.e). (25)
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Similar relations are postulated for the corresponding 1

guantities incorporating gradient terms. Denoting

de? dés? dn?
g g e @
e2=e2-Ted, O2=62-To%, ni=ni-Tn,
we obtain from Eq(24)
, 1 2 2
S (¢,p,C,e,V¢,Vp,VC)ZS(¢,p,C,e)_Z[GS(V(Z&)

+ 64V p)2+ 74Ve)?], (27)

e'(¢,p,c,5,V$,Vp,Vc)=e(¢,p,C,S)+ %[EE(V@Z

SE(Vp)2+ 7E(Ve)?]. (29

PHYSICAL REVIEW E67, 026117 (2003

d¢ ,dc
s=7|Jet et g Vot 6 dtvp+nF Gt Vet | (e ra)
(7£V7c)
AT 32
Finally we find
ds’
pHZ—V-JS‘FO’, (33

where the entropy production rateis given by

_ 1dg| of 2v2) g vt
=TT A\ Pag Y ¢TI VT
do €z d 62\ dc ne
+ 5 VeV T+ g Py, V( + Ve V(
(ma—pms) ZVZC 1 )
+Jp-V —T 77|:p—_|_ —?(P-FT).VV. (34

Under the above assumptions the differential form of the

second law of thermodynamics reads

Tds = de—— L 2(V)2— 52(V )2
34’ =P~ ZEF F P
1 2 2
— 5 7r(Ve)?|dp—(up—pa)de
1
—;[eé<V¢>d(V¢>+5§(vp>d<vp>
+72(Ve)d(Ve)]. (29)

Combining Eq.{(29) with the balance equatiorn&9), (21),
and (23) yields, after some manipulations

52 d
o (g

ds’ V.J. € d
E _FV.( ¢V¢

Plat =™ T dt dt
7];: dc 1 d¢ of 2
TV dtv) ?dt( e — eV
1 (uB—ma)
_T(Pik""Tik)aivk"_%v'\]D
2u2
neVec dc
T ar (30

whereT;, is the capillary stress tensor defined by Ebf)
and rewritten, out of equilibrium, as

60
Tik= 5ik( w'— P5—p) — €¢ b= S¢pipk— MECiCy.-
(31

We can rearrange E@30) according to the entropy bal-

ance equatioii23) adopting an entropy flux

As observed by Charach and Fifgl], the nonclassical
contributions of the above equatigthird, fourth, and fifth
terms in the right-hand siglean be treated, according to the
Courier’s principle, as either of vectorial or of scalar origin,
depending on the way in which the corresponding thermody-
namic forces or fluxes are defined. However, to simplify the
discussion, extending the choice of Waegal. in their
model for solidification at constant densit9], we assume
that e2= 62=72=0, so thate=e’, and 2,53, n3=const.
Moreover, in the sequel we shall neglect the spatial variation
of €2, 62, and 2, which amounts to neglect the thermal
gradient across the interface. Then, the constraint of local
positive entropy production reduces to

——eFV2¢), (35)
Je=—KVT, (36)

: (37)

where M. ,I' are positive constants and is the thermal
conductivity. Moreover, assuming that the tensor contribu-
tion is only amenable to viscous dissipation, we obtain

P=—T-II, (39)

with IT indicating the standard stress tensor for viscous flu-
ids. We anticipate here that in the following we shall con-
sider the solid phase as an isotropic fluid with a viscosity
much larger than that of the liquid phase.

B. The thermodynamic potential

To proceed further we need an explicit form for the spe-
cific free energyf. At first, we construct a suitable expression
for a pure substance. In this case the potential should take the
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form of a double well over thep,¢ plane, with the two To simplify the discussion, here and in the sequel we ne-
minima centered at the bulk soligh€ pso, ¢=0) and liquid  glect the difference of the molar mass of the two compo-

(p=p10,¢=1), where we denoted aso, pio the equilib-  ontg assumingd ,=Mz=M), that means to identify the
rium densities in the two phases at some reference temperaioiar concentration with the mass fraction.

ture T, and pressur@y. We start from a linearized equation  tran the solute fluxd may be expressed as
of state of the type ' P

p—po=—PBpo(T—To) +Kpo(p+P—po), (39 M R ( nE )
JD:__—VC+MCV _V2C
where 8 is the thermal expansion coefficient akds the Mc(1-c) pT
isothermal compressibilityp is the thermodynamic pressure (an—ag) () T
given by p=p?(df/dp) andP is the excess pressure due to + Mcv(ggww — LOA( 1— —)
the capillary stress. In the case of a planar interface normal to pT T Toa

z, the latter is written asP=(eZp2+ 62p2+ nic2)/2 T

— PSPz - LOB( 1- T—)H : (43)
An expression of the free energy, consistent with §) o8
may be written as
We recover the standard definition of the solute diffusivity

ag(¢) B {P‘Po((ﬁ)} D, taking
f(p,d,T)= +—(T—To)|————— |+ -P
M.R
p=po($) T De=—=——— (44)
X|—| = — +C(T— = :
[ ppo( ) } CTInTo C(T-To) ¢ pMc(1—c)
T —P
+p(¢)L0( 1- T_) — (Po )) As the solute diffusivity is quite different in the solid and
o/ Pold liquid phases, in the followind® will be taken asD.=D
po(®) [ p—pol )2 +p(¢)(D,—Dy), D, and Dg being the diffusivities in the
ok [W} : (40)  liquid and in the solid, respectively. In the same spirit we

represent the local viscosity ag= s+ p(&) (7, — ns), with

with g( ) =(1/4)¢?(1— ¢)2. In Eq. (40), C is the specific ~ 7s> 7 - _
heat and_, is the latent heat per unit mass in the reference. 10 complete the model we assume that, along a solid-
state. We observe a Landau-Ginzburg contribution for thdiduid transition, the internal energy changes as

order parameterp (first term in the right-hand side of the

equation, and the elastic contribution of the last term. Along e=(1—c)e,+ceg=(1—c)esg+Cesgt p(h)[(1—C)Lga

the way followed by Ref[23] we shall neglect in the pres-

sure field the contribution due to the density dependence of  +CLgg]. (45

the well height. The functiop(¢) is monotonic and increas-
ing with ¢, assuming the valuep(0)=0, p(1)=1, and
describes the transition of the free energy from the solid t
the liquid phase. Choosing(¢) = ¢3(10— 15¢+ 6 ¢?) fixes
the bulk solid and liquid to the values=0 and$=1, re-
spectively, for every value of temperature. The equilibrium

densitypo( ) is assumed to change in the interfacial region C. Nondimensional equations in one dimension

as’;OEPO(%):lpb39+p(‘ﬁl)l(p'ot;ps‘))' fic 1 < writ. . The governing equations can be written in nondimen-
or an ideal binary afloy, the Specific Iree energy 1S Wit 5o na) form adopting a reference lengtland scaling time to

Then, Eqs(19—(22) and(35), along with specifications
Ct36), (38), (43), and (45), represent the evolution equations
for the system.

ten as 7=£&?/D, . Density is scaled tp,on and a nondimensional
RT RT temperature is _irjtroduced 8s=C,(T—Toa)/Loa, whereC,
f=(1—c)|fa+ =In(1—c)|+c|fg+=1Inc|, (41 Iisthe the specific heat at constant pressure. Pressure and the
M M components of the stress tensor are scalgeldq3, where

. vo= &/ 7 is the natural reference for velocities. Notice that in
whereR is the gas constant, arith,fg represent the free ine following we neglect thermal expansion effects and we
energy of the pure componemsandB obtained by replac-  35sume equal compressibilities in both phases. Retaining for
ing in Eqg. (40) the material parameters with the ones of thesimplicity the same symbols for the scalendimensional
solvent and the solute, respectively, and the equilibrium de%uantities, and in absence of body forces, the model equa-

sity with tions in one dimension read
PoaPoB ap ap v
= . (42) — 4t y—=—p—
pol#) (1—c)pogtCpon gt Yoz Pz (46)
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¢ b _ I

STV =M — =g ($)[(1-C) + cwy]

1

T
—pp’(cﬁ)ﬁl[(l—c)( 1- T—) +Cw,
0A

T 1
oo ”— 5820 (H)[(1—C)(1~Sy) +c(E
0B

—SB>](p° p), (47)
Po
a a —po) J a
p;t’+pv—”=—\7-[ﬁs(p p°}+ﬁ%(xl<¢)(9—2),
(48)
Jc Jc —C
P TPv o= 2 Na(¢)pc(1- C)—{ln—
"‘_359(9{’)(1 w1)+ p(d’)
alll gl el e
X ,31,355 1_T_OA 1—T—OB
Toa Bs 9°C
au u d Dt d°u
—r v =P ()1~ c>+cw2](—¢+v—¢)+DlT o

2
N B2Ba (190) 7 (50

pB1Bs iz

0z
whereD+ is the thermal diffusivity, and the functions ()

and Ay(¢) are defined as\;(#)=1+[1-p(¢)I[(ns/m)
—1] andA,(#)=(Ds/D)) +p(¢)[1—-(Ds/D))].
The model parameters are defined as

2 2
FfFT ~

2 fF B 1_‘ L I[)) FT
m: s €= , T s f—
&2 ané? 1= 1 TPioAk-0A 2
1
o2 (51)
P10AV o
Ba= 7 B aAM B 77§M
N TP|0AU(2)’ PioaRToa’ PIOAngTOA’
5§P|0A
B7: 52 ’
ag Los PsoA PsoB
w=—, 2=
an 0A Ploa Ploa
E PloB
PloA
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TABLE |. Values of the model parameters.

Parameter Value
Sa 1.051
Sg 1.026
E 0.983
w, 5.727x 10!
w5 6.910x10° !
m 466
P 8x10*
B1 8.484x 10°
B 6.681x 10°
Bs 9.231x10%
Ba 1.282x 10°
Bs 1.071
Bs 6.853x 107
B7 6.440x 10°

Notice that imposingS,=Sg=E=1, the density effects
are ruled out; if, in addition, we pose=0 orc=1 we re-
cover the classic phase-field description for the solidification
of a pure substanceA(or B, respectively. In this case the
model parametersg ,a, g,I" can be related to the material
properties through32]

EF=6\/§0'AhA=6\/§0'BhB, aA=6\/§z—:y (52

o oAl ogT
aB:6ﬁh_:, = MA AOA_MB BOB’

pALAeF pBLBE|2:

whereh is the interface width¢g is the surface tension, and

w is the kinetic undercooling coefficient that relates the in-
terface undercooling to the interface velocitythroughv
=u(To—T). We assume that the above equations still rep-
resent a good estimation of the model parameters in terms of
the thermophysical properties of the material. As we did not
allow I', e to depend on concentration, we force the two
Conditions O-AhA:(TBhB and /-LATOA/(hAPALA)
=ugTos/(hgpelg). In case thah,~hg, the latter is ame-
nable to the reasonable assumption that the interface velocity
should result proportional to the free energy jump across the
interface; indeed, for a nickel-copper alloy the condition is
verified within 1%. To estimaté:-, 7z we assume equal
contributions of the gradient terms to the surface tension, i.e.,
pié2=et=7nZ. To conduct the numerical simulations we
referred to the phase diagram of a nickeblven} and cop-

per (solute binary alloy. The interface thickness has been
chosen ah,=16x10 8 cm, and the length scale is=2
X10 * cm. The resulting values of the nondimensional
model parameters are summarized in Table I.

IV. THE NUMERICAL METHOD
We conducted two sets of numerical experiments. At first

we solved the one-dimensional equati@dg)—(49) at fixed
and uniform temperature. Then, we simulated a directional
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solidification process in which the phase transition is driven 0 I
by a temperature field moving at constant sp&d and H
characterized by a uniform gradie@t>0 [in this case, Eq. 3
(50) is modified asdu/dt=—VpG]. In both cases, the un-
derlying assumption is that heat diffusion is much faster than
solute diffusion, so that the temperature field can be decou:
pled from the concentration and the phase fields.

The equations have been solved on the computational do
main O<z=z,. Initially, a phase boundary &=z, sepa- )
rates a solid regionz<zy,¢=0) from the liquid region £ °°2
>7q,¢=1). The density in the two phases is selected at the
minimum of the potential, and the system is initially at rest,
i.e.,v(z,0)=0. In the first set of simulationdixed tempera-
ture), the concentration is initially uniform below the liqui-
dus line. For directional solidification, the initial concentra-
tion in the two phases is fixed at the equilibrium values
corresponding to the initial interface temperature. For the
phase, density, and concentration fields we imposed Neu _j5 . .
mann boundary conditions; the velocity is fixed @&t) 0.65 0.85 1.05 1.25
=0 at the left end of the solid, while we chosév(dz)=0
at z=z,,. To advance the solution forward in time, we em-
ployed an explicit Euler integration scheme for the density, FIG. 1. The pressure wave originated at the solid-liquid inter-
concentration, and phase-field equations. To allow the condface. The interface is located near 0.64, and the different curves
tion 5> 7, which results in a large diffusion term in the represent the pressure field at timesX1® 8, 3.0x10 8, and
momentum equation, the latter was integrated with a Crank4.5x 102 from left to right. The wave speed is=9.60x 1¢°. The
Nicolson implicit scheme. Second-order central differencegnodel parameters are specified in Table I.
were used to discretize the Laplace operator, and upwind
differences for the convective terms. To ensure an accurawave front, results ;= 9.60x 10°; this value is in excellent
resolution of the solid-liquid interface, the grid spacing wasagreement with the theoretical one for the liquid in equilib-

selected adz=0.2%; the time step required for numerical UM, assumed as a pure elastic medium: the latter is

stability is At=0.12x10"°. Following a standard method VIP/dp=pioaBa/pio=9.61x1C°. » _

in computational fluid dynamics, the velocity field was After a short transient, these growth conditions result in a

solved on a computational grid shifted a&/2 with respect Steady advancement of the solid-liquid interface. In Figs.

to the one used for the scalar fields. 2(a)—2(d), we show the phase, density, velocity, and concen-
tration profiles obtained at different times. We observe that
the solid is at rest, while the liquid is advected towards the
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V. THE NUMERICAL RESULTS interface with a velocityy = —601.81. The interface veloc-
ity, as resulting from the numerical data,vis=11927. No-
A. Isothermal growth tice that this is the same value fixed by the mass conservation

We first checked whether the model gives a consistentaw through the relatiom =(1—p¢y/pjo)v, . The solid con-
description of the mechanical effects due to the densitgentration iscs=cg, while on the liquid side of the interface
change in solidification. To this aim we solved the modelthe concentration peak ig=0.07267. We see that the trap-
equations at constant temperature, fixing our attention to thping of solute results in a dynamic partition coefficidnt
mechanical relaxation of the system. The far-field concentra=c4/c;=0.993, far from equilibrium valug&,=0.795.
tion is cg=0.072 14, and the temperature is selectedr as At higher temperatures, as tfig line is approached from
=1700 K. This value is well below th&, line (the locus below, we observed the expected transition from the kinetic
where the Helmoltz free energies of the liquid and the solido the diffusive regime. We want now to draw the attention
are equal: att=cy, we haveT,=1704.32 K), ensuring a on an interesting point. The flow effects result in a slower
steady growth regime. The contraction of the liquid in frontinterface dynamicgsee, for example Ref33]). Then, we
of the interface originates a pressure wave that propagatesay expect that in the dynamic phase diagr@amthe T,c
both into the solid and into the liquid. This effect is illus- plang steady state solutions, due to density change, could be
trated in Fig. 1, where only the liquid portion of the system ispushed into the region of diffusive regimes. This effect is
shown. The solid-liquid interface is located nem#0.64 illustrated in Fig. 3, where the growth rate is represented
(here and in the following, except for temperature, all theversus time, al =1703 K. The upper set of data shows the
numerical results will be presented in nondimensional form kinetic (steady growth obtained without density changee.,
and the pressure field is represented at different times. Thiixing Sy=Sg=E=1). In the lower curve we accounted for
initial pressure was initialized g%z,0)=0, and we see the the density effects, fixing,=Sg=0.8, E=1; in this case
negative pressure front that propagates into the liquid. Théhe late stage growth is characterized by the diffusive law
velocity of the wave, estimated tracking the position of thev,~t~ %2
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FIG. 2. The phaséa), density(b), velocity (c), and concentratiord) fields at different times. The curves are takeriatl.2x 10 5 t
=1.8X105,2.4x 10 5 from left to right. The model parameters are specified in Table I.

B. Directional solidification steady interface temperatufg, following the advancing
The aim of this set of simulations is to determine how andSotherms with their same velocity, and the solid phase grows
to what extent the volume difference of the two phases afWith uniform concentratiorc,o. The solute segregation on
fects the trapping of solute and the temperature of the solid® moving front is evaluated computing the pealc@,t),
liquid interface. which identifies the concentratian on the liquid side of the

The initial concentration of the alloy is set tog, Interface. , o
=0.056 097 for the solid phase<€z,) and ¢,,=0.070 686 _ We_ recall that the segregation of solute is mte_rpreted as a
for the liquid phaseZ>z,). This corresponds to an equilib- diffusive process across the interface, characterized by a ve-

rlum temperaturel, = 1705.71 K. Then the initial tempera- 0City scalevq=D/a, whereD is the solute diffusivity ana
ture profile, defined as is the interface width. The dependence of the partition coef-

ficient on the growth velocity takes the forf84,35

T(z,00=T,+G(z—zy) (53
. iy . . . ke+ ] lv d
is pulled towards the positive direction with constant ve- k(v,)= ] (54)
locity Vp . After a transient, the solidification front selects a 1+v,/vg
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FIG. 3. The growth rate fol =1703 K. The upper curveS,
=Sg=E=1) shows the steady regime when density effects are  ¢.0800
neglected. The flow field shifts the growth regime into the diffusive
region (lower curve,Sy=Sz=0.8,E=1). (b)
In this perspective, the solute segregation could only be
" . 00775
affected by a change of the solute transition layer. Figures
4(a) and 4b) show the concentration field obtained in steady _§
conditions with and without density change, respectively. In § F
both cases we hav@=200 K andVp=800. Notice thatthe § ¢ :
solute profile is almost unaffected by the flow field. Then, we “g’ 0.0750 - : .
do not expect significant effects of the density change on theg .
k(v,) dependence. This prediction is confirmed in Fig. 5, M
which shows the (normalized partition coefficient K @ : ‘
—ke)/(1—kg) versus the growth rate; the different curves 0.0725 | N A
are taken withE=1 andS,= Sg ranging from 1 to 1.2. We . s
observe that the curves are very close to each other, and th s 1
k values do not differ for more than 5%.

The dependence of the interface temperature on the inter
face velocity exhibits a nonmonotonic behavior: due to sup-
pression of solute partitionin@nd to the reduction of solute
concentration on the liquid side of the interfacat low ve- z
locities T, (v,) first rises, then falls with increasing reflect- FIG. 4. The solute field in directional solidification wit
ing the increasing undercooling required to advance the so= 5o k andVp=800. The upper curvéa) is obtained withS,
lidification front. In the previous analysis, we observed that_g —g=1, the lower curveb) with Sy=Sz=1.15,E=1. The
the density effects have almost no influence on the trappinghodel parameters are specified in Table I.
of solute, while they induce a significant dissipation in the
interface dynamics. As a result, the descending branch of theility, which is responsible for the band formation at large
T(vy) curve should be pushed towards lower temperaturegyrowth rates, should be shifted by the density effects towards
and the maximum of the curve should migrate towards lowefgwer velocities.
velocities. This effect is shown in Fig. 6, where the interface
temperature is shown versus the interface velocity; the
curves are taken with the same values=8,,Sg used in
Fig. 5. Notice the strong undercooling which characterizes The classical phase-field model is a well established tool
the high velocity branch of the curves, as the change of volto describe solidification far from equilibrium, of both pure
ume increases. We should also observe that this behavigsubstances and binary solutions. However, this method has
extends its effects into other fields of the solidification phe-been exploited assuming equal densities of the solid and lig-
nomenology: for example, the onset of the oscillatory insta-uid phases. In the model presented in this paper, for the

0.11 0.12 0.13 0.14

VI. CONCLUSIONS
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FIG. 5. The(normalized partition coefficient k—ke)/(1—k,) FIG. 6. The interface temperature vs the interface velocity. The
vs the growth rate; the different curves are taken viithl and  curves are obtained witE=1 andS,=Sg; from top to down we
Sp=S=1.00,1.05,1.10,1.15,1.20. haveS,=Sz=1.00,1.05,1.10,1.15,1.20.

o ) o namics, and the flow field are properly described. The
solidification of a binary alloy, this limitation is removed, change of density at the interface has negligible effects on
allowing one to describe the propagation of density waveshe structure of the solute field; as a consequence the trap-
and the advected flow field. The equations of the model havging of solute is almost unaffected. On the other side, the
been derived imposing local positive entropy production, andlower interface dynamics induced by the flow field extends
reduce to the classical formulation for equal solid and liquidthe stable branch of th§,(v,) curve towards lower veloci-
densities. The numerical solution of the governing equationsies. This reduces the region of the parameters’ space where
shows that the sound wave propagation, the interfacial dythe oscillatory instability could be observed.
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